Quiz $3 * 3:$

$$
f(x, y)=y e^{x y}
$$

Tangent plane @ $(x, y)=(0,1)$.

$$
f_{y}(x, y)=e^{x y}+y e^{x y} x
$$

(Common mistake was computing fy in arreetly) You might remember the tan. plane eqn 25

$$
z=z_{0}+f_{x} \cdot\left(x-x_{0}\right)+f_{y} \cdot\left(y-y_{0}\right)
$$

supposed to de

$$
f_{x}\left(x_{0}, y_{0}\right)
$$

ex) $z=x^{2}+y^{2} \quad x, y, z$ are real \#s and this eq describes a relationship between them.
$f(x, y)=x^{2}+y^{2} \quad f$ is a function $\mathbb{R}^{2} \rightarrow \mathbb{R}$
anal this equation describes what f does to an arbitrary input
Note: $\quad f(u, v)=u^{2}+y^{2}$ defines the exact same function f.

Common mistake: using $f_{x}(x, y)$ instead of $f_{x}\left(x_{0}, y_{0}\right)$ in the tangent plane equation, and writing

$$
z=1+y^{2} e^{x y}(x-0)+\left(e^{f y}+x y e^{x y}\right)(y-1)
$$

(But this is most definitely not even a plane equation. plus it looks way harder to work with than the original $f(x, y)^{\prime}$?)

Two equivalent ways of written tan plane eqn:

$$
\begin{aligned}
& z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right) \\
&+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right) \\
& +F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right) \quad(*) \\
& \quad+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 \\
& \quad \nabla F\left(\vec{r}_{0}\right) \cdot\left(\vec{r}-\vec{r}_{0}\right)=0
\end{aligned}
$$

Mistake I saw: People used (*) with $F(x, y, z)=y e^{x y}$
Corrected ven: write

$$
z=y e^{x y}
$$

$$
\text { rearrange to } y e^{x y}-z=0
$$

this is $F(x, y, z)$
$\left.\#^{-1}\right) \lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y^{2}}{x y+x^{2}}$
Toy rang lines $y=m x$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{x^{2}+m^{2} x^{2}}{x^{2} m+x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{1+m^{2}}{m+1}=\frac{1+m^{2}}{m+1}
\end{aligned}
$$

This means, along $y=0$ (the $x-2 x i s$) the limit is 1
bat along $y=2 x$ the Imit is $5 / 3$. So the mit DNE.

Picture:

